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Abstract
We study normal state properties of an interacting Fermi gas in an isotropic
harmonic trap of arbitrary dimensions. We exactly calculate the first-order
perturbation terms in the ground-state energy and chemical potential, and obtain
simple analytic expressions of the total energy and chemical potential. At zero
temperature, we find that the Thomas–Fermi approximation agrees well with
the exact results for any dimension even though the system is small. In the
high-temperature (classical) region, we find the interaction energy decreases in
proportion to T −d/2, where T is the temperature and d is the dimension of the
system.

PACS numbers: 05.30.Fk, 03.75.Ss, 71.10.Ca

1. Introduction

Recently Fermi degeneracy in neutral atomic gases has been attained for 40K [1] and 6Li
[2–4]. In these systems, one can control physical parameters with relative ease. Especially,
the interaction strength can be varied in a wide range by using Feshbach resonance [5]. The
exciting phenomena of fermion paring are thus expected either in momentum space (Cooper
pairing) or in real space (BEC of preformed fermion pairs), leading to weak-coupling or
strong-coupling superfluidity [6–9]. This system is also characterized by the existence of
a trapping potential, which leads to discrete quantum eigenstates and shell structures. This
makes analytic calculations rather difficult. In many practical cases one uses the Thomas–
Fermi approximation for analytic calculations.

This method is justified for a system which has a sufficiently large number of particles.
Several properties [10, 15–17] such as single-particle excitation and Cooper pair correlation
are investigated in this approximation. However it cannot always be applicable for small
systems whose level discreteness plays important roles.

The purpose of this paper is to investigate the normal ground-state properties of a dilute
interacting Fermi gas in a trap with the use of the exact eigenstate of the harmonic trap
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without resorting to the Thomas–Fermi approximation. We assume contact-type inter-particle
interaction, and give a systematic method to count up the quantum number of the harmonic
potential. A simple analytic expression for the total ground-state energy and the chemical
potential is obtained within the first-order perturbation theory.

2. General formalism

We consider a two-component Fermi gas with a short-range interaction in an isotropic harmonic
potential. The two components (hyperfine state) are labelled by α = ↑↓ and assumed to have
equal concentration. We choose a unit system in which h̄ = ω = m = 1, where m is the
atomic mass, and ω is the frequency of an isotropic trapping potential. We start from the
Hamiltonian H = H0 + Hint, where

H0 =
∑

α

∫
dr ψ †

α(r)
(

−1

2

d2

dr2
+

1

2
r2

)
ψα(r) (1)

is the one-particle part, ψα(r) being the field operators of the component α.

Hint = g

∫
dr ψ

†
↑(r)ψ †

↓(r)ψ↓(r)ψ↑(r) (2)

is the two-body interaction Hamiltonian, and g is the interaction strength. We do not
use pseudopotential δ(r)∂rr [18–20], but use a delta function for simplicity. H0 is easily
diagonalized by writing the field operator as

ψα(r) =
d∏
i

∑
ni

Hni (xi) e− 1
2 x2√

π
1
2 ni!2ni

aαn (3)

where d is the dimension of the system, Hni (xi) is the Hermite polynomial and n = (n1, . . .)

is quantum number, for example n = (n1, n2, n3) stand for d = 3, and
[
aαn, a

†
α′n′

] = δαα′δnn′ .
Then H0 and Hint are written in the form

H0 =
d∑

i=1

∑
niα

(
ni +

1

2

)
a†

αnaαn (4)

Hint = g

d∏
i=1

∑
ni

1n
i
2n

i
3n

i
4

w
(
ni

1, n
i
2, n

i
3, n

i
4

)
a
†
↑n1

a
†
↓n2

a↓n3a↑n4 . (5)

Here, w(n1, n2, n3, n4) is a function of quantum numbers of the trapped system and is given
by

w(n1, n2, n3, n4) = (−1)
−n1+n2−n3+n4

2

√
(2n1)!!(2n3)!!

(2n2)!!(2n4)!!

×
∫ ∞

0

dk

π
k−n1+n2−n3+n4 e− k2

2 Ln2−n1
n1

(
k2

2

)
Ln4−n3

n3

(
k2

2

)
(6)

where Lm
n (x) is the associated Laguerre polynomial. We can calculate this form using Fourier

transformation [21, 22].
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3. Ground-state properties

3.1. One-dimensional case

We use first-order perturbation theory, and obtain one-dimensional interaction energy for the
one-dimensional case in the form

Eint(nF ) = g

nF∑
n=0,m=0

w(n,m,m, n) (7)

where nF is defined by εF

h̄ω
− d/2, where εF is the Fermi energy. Henceforth, we call

this Fermi number. The function w(n, n,m,m) has a complicated dependence on quantum
numbers, showing considerable difference from the momentum expansion ordinarily used to
treat homogeneous systems. We can nevertheless calculate equation (7) exactly as shown in
appendix A, with the result

Eint(nF ) = g√
2π

nF∑
r=0

(
(2r + 1)!!

(2r)!!

)2
(2nF − 2r − 1)!!

(2nF − 2r)!!
. (8)

The above summation can be reduced further to an integral, yielding a simple form of energy

E(N)∼= N2

4
+

4g

3π2
N

3
2 . (9)

Here, N = 2N↑ = 2N↓ is the total number of particles. The chemical potential is also
calculated by the relation µ(Nα) = (E(Nα + 1) − E(Nα))/2, yielding

µ(Nα)∼= Nα +
2g

π2

√
2Nα. (10)

Equations (9), (10) show that as N increases, the ratio Eint/(E −Eint) becomes small, thus one
may see that the system behaves like a free particle. However we should note the fact that, in
general, even a weak interaction destroys the Fermi-liquid nature in one dimension. So, the
above result may not be correct if we take quantum fluctuation into account. However, we
do not intend to analyse specific features of one dimension. Our purpose in this study is to
discuss arbitrary dimensions.

3.2. Two-dimensional case

In the two-dimensional case, we have to deal with the degeneracy which makes calculation
of the energy rather complicated. However, as shown in appendix B, the total energy can be
calculated exactly in this approximation, with the result

E(nF ) = 1

3
(nF + 1)(nF + 2)(2nF + 3) +

g

12π
(nF + 1)(nF + 2)(2nF + 3) (11)

where we assume that the particle is filled up to the Fermi level. The Fermi number nF and
total number N are related by nF = 1

2 (−3 +
√

4N + 1); therefore, the energy is given by

E(N) = N

3

√
4N + 1

(
1 +

g

4π

)
. (12)

Both the single-particle term and the interaction term have the same dependence on the number
of particles, similar to the results for the homogeneous system. The mean value of the chemical
potential µ(N) = 1

2
∂E
∂N

is given by

µ(Nα) = 12Nα + 1

2
√

8Nα + 1

(
1 +

g

4π

)
. (13)
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Figure 1. The ratio of the interaction energy to its Thomas–Fermi value is plotted as a function of
Fermi number nF . d represents the dimension of the system.

In the following, we investigate the one-particle energy shift. Let us add one more particle
to the system filled up to the Fermi level. The energy shift ξ(nx, ny) is generally a function
of degenerate level nx, ny (nx + ny = nF + 1). But in this case, it does not depend on the
coordinate; in other words, interactions between particles belonging to different energy levels
do not lift degeneracy [24]. This result is expected to have a connection to exclusion statistics
in a two-dimensional gas [11–14]. ξ(nx, ny) is given by

ξ(nx, ny) = g

4π
(nF + 1). (14)

Note that the interacting term in equation (13) corresponds exactly to the above form.

3.3. Three-dimensional case

The calculation can be done more or less similarly also in the three-dimensional case. The
details are given in appendix D. The result for total energy is given by

E(nF ) = 1

4
(nF + 1)(nF + 2)2(nF + 3) +

g

9(2π)
3
2

nF∑
r=0

(
(2r + 3)!!

(2r)!!

)2
(2nF − 2r + 1)!!

(2nF − 2r)!!
(15)

∼= 3
4
3

4
N

4
3 +

256
√

6g

945π3
N

3
2 . (16)

Equation (16) can also be obtained from the Thomas–Fermi approximation with weak
interaction (|g| � 1) [15–17, 23]

ETF
int (N) = g

4

∫
d3x n(x)2 (17)

where n(x) = 23/2

3π2

[
µ− 1

2x2
]3/2

is the non-interacting particle density. It is possible to indicate
the same procedure in the one- and two-dimensional case. As can be seen from figure 1,
the exact first-order perturbation calculation for the interaction energies is very close to the
Thomas–Fermi approximation. While the Thomas–Fermi approximation is ordinarily correct
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Figure 2. Single-particle energy shift of the three-dimensional system caused by inter-shell
interaction for g = 1. (nx, ny, nz) = (nx, ny, nF + 1 − nx − ny) is the degenerate state of the
particle.

in a system of sufficiently large number of particles, our results show that this approximation
is applicable even to a system which has a small number of particles. The average chemical
potential is given by

µ(Nα) = (6Nα)
1
3

(
1 +

128
√

2g

315π3
(6Nα)

1
6

)
. (18)

We investigate the energy shift more precisely as we have done in the two-dimensional cases.
The one-particle energy shift ξ(nx, ny, nz) is found to be

ξ(nx, ny, nz) =
√

2g

4π
3
2

dnF

dβnF

(
β

1
2 +nF Fnx

(β)Fny
(β)Fnz

(β)
)∣∣

β=1 (19)

where nx, ny, nz(nx + ny + nz = nF + 1) are coordinates of degenerate states and Fn(β) stands
for hypergeometric function F

(−n, 1
2 , 1; 1

β

)
.

As shown in figure 2, the interaction lifts the degeneracy and equation (19) has maximum
value when two of the quantum numbers are zero. The maximum value is

ξ(nx, ny, nz)∼=
√

2g

π2

(
4

9π
n

3
2
F +

65

192
n

1
2
F

)
. (20)

This form reproduces the results of [15, 16]. Equation (19) has a minimum value at
nx

∼= ny
∼= nz, namely the one-particle wavefunction forms a symmetrical shape. We calculate

the minimum value numerically and find it to be roughly 0.89 times lower than the maximum
value.

4. Finite temperature

At finite temperatures, the number of particles and the energy of d-dimensional systems are
written in the form

N = 2
∞∑

n=0

D(n)f (n) (21)
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E = 2
∞∑

n=0

D(n)

(
n +

d

2

)
f (n) + g

d∏
i=1

∞∑
ni=0
mi=0

h(ni,mi)f (n)f (m) (22)

where f (n) is the distribution function, n = n1 + · · · + nd and D(n) = ∑
n1+···+nd=n 1 is the

density of state. We restrict our discussion to high temperatures, i.e. well above the Fermi
temperature. Then, we use the Boltzmann distribution function and calculate equation (21)
and find it to be

N = 2
e

1
T

(µ− d
2 )(

1 − e− 1
T

)d

∼= 2T d e
1
T

(µ− d
2 ). (23)

Here, we put Boltzmann’s constant kB = 1 for simplicity. Using equation (21), we can
calculate equation (22) which is given in appendix E with the result

E = dN

2 tanh
(

2
T

) +
g

4(2π)
d
2

N2 tanh
d
2

(
2

T

)

∼= dNT +
gN2

4(4πT )
d
2

. (24)

We have thus obtained both T = 0 and T → ∞ limits. These results may be useful in
constructing an interpolation formula for finite temperatures.

5. Summary

In summary, we have studied an interacting Fermi gas in an arbitrary dimensional isotropic
harmonic trap. We have used first-order perturbation theory. In contrast to the homogeneous
system, the first-order perturbation term has a non-trivial contribution to the system.
Dependence on the number of particles, dimension and temperature is characteristic of the
trapped system. We have calculated energy and chemical potential. As a result we found
that the Thomas–Fermi approximation is applicable even if the system is small. Furthermore
we found the interaction energy decreases in proportion to T − d

2 , when the temperature of the
system is well above the Fermi temperature.

Appendix A. Derivation of equations (9), (10)

One easily finds that equation (7) is written in the form

Eint(nF ) = g√
2π

∫ ∞

0
dk k− 1

2 e−k

nF∑
n=0

Ln(k)

nF∑
m=0

Lm(k). (A.1)

We use the relation

La
n(x) =

n∑
r=0


(a − b + r)

r!
(a − b)
Lb

n−r (x) (A.2)

where 
(r) is the gamma function; we put a = 1 and b = 0 and find

Eint(nF ) = g√
2π

∫ ∞

0
dk k− 1

2 e−kL1
nF

(k)2. (A.3)
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We use equation (A.2) again, put a = 1 and b = − 1
2 and use the relation∫ ∞

0
dx e−xxaLa

n(x)La
m(x) = 
(a + n + 1)

n!
δn,m. (A.4)

One easily finds equation (8) from equation (A.4). We use Wallis’s formula (2r−1)!!/(2r)!! ∼=
1/

√
πr and replace the summation with an integral, then the interaction term of equation (8)

is reduced to

4g√
2π2

∫ nF

0
dr

r√
nF − r

. (A.5)

We obtain equation (9) directly from (A.5). The interaction term of the chemical potential is
written in the form

µint(Nα) = (Eint(Nα + 1) − Eint(Nα))/2

= g

nF +1∑
n=0

w(n, n, nF , nF ). (A.6)

We use relations (A.2) and (A.4) and find

µint(Nα) = g√
2π

nF +1∑
r=0

(
(2r − 1)!!

(2r)!!

)2
(2nF + 1 − 2r)!!

(2nF + 2 − 2r)!!
(2r + 1)

∼=
√

2g

π2

∫ nF +1

0
dr

1√
nF + 1 − r

. (A.7)

We obtain equation (10) directly from (A.7).

Appendix B. Derivation of two-dimensional energy

The two-dimensional interaction energy is written in the form

Eint(N) = g

nF∑
n=0

nF∑
m=0

∑
nx+ny=n

mx+my=m

h(nx,mx)h(ny,my). (B.1)

Here, h(n,m) represents w(n, n,m,m). We use the relation∑
n1+···+nd=n

Ln1(x1) · · · Lnd
(xd) = Ld−1

n (x1 + · · · + xd). (B.2)

We put d = 2, then equation (B.1) is reduced to

Eint(N) = g

nF∑
n=0

nF∑
m=0

∫ ∞

−∞
dx dy e− 1

2 (x2+y2)L1
m

(
x2 + y2

2

)
L1

n

(
x2 + y2

2

)
. (B.3)

We replace above the Cartesian coordinate values (x, y) with polar coordinates (r, θ) and use
equation (A.2), then equation (B.3) is reduced to

Eint(N) = g

2π

∫ ∞

0
d

(
r2

2

)
e− r2

2

(
L2

nF

(
r2

2

))2

. (B.4)

We apply equations (A.2) and (A.4) to the above form, and obtain equation (11). Note that
three-dimensional energy can also be calculated.
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Appendix C. Derivation of equations (18), (19)

Suppose that we are adding one more particle to the three-dimensional system whose particles
are filled up to Fermi level. Then, the energy shift is

ξ(nx, ny, nz) = g

(2π)3

nF∑
m=0

∑
mx+my+mz=m

h(mx, nx)h(my, ny)h(mz, nz)

= g

π3

∫ ∞

0
dr r2e− 1

2 r2
∫ π

2

0
dϕ

∫ π
2

0
dθ sin θL3

nF

(
r2

2

)

×Lnx

(
r2

2
sin2 θ cos2 ϕ

)
Lny

(
r2

2
sin2 θ sin2 ϕ

)
Lnz

(
r2

2
cos2 θ

)
. (C.1)

We expand the Laguerre polynomials and calculate angular integrals,∫ π
2

0
dϕ

∫ π
2

0
dθ sin θLnx

(
r2

2
sin2 θ cos2 ϕ

)
Lny

(
r2

2
sin2 θ sin2 ϕ

)
Lnz

(
r2

2
cos2 θ

)

= 1

4

nx∑
l1=0

ny∑
l2=0

nz∑
l3=0

(−1)l
(

nx

lx

) (
ny

ly

)(
nz

lz

)
rl

lx!ly!lz!



(
lx + 1

2

)



(
ly + 1

2

)



(
lz + 1

2

)



(
l + 3

2

)
(C.2)

where
(
n
l

)
is the binomial coefficient, and we put l = lx + ly + lz. The radial integral is also

calculated and found to be∫ ∞

0
dr r

1
2 +l e−rL3

nF
(r) = 


(
5
2 − l + nF

)
nF !


(
5
2 − l

) 


(
3

2
+ l

)
. (C.3)

From equations (C.2) and (C.3), we find

ξ(nx, ny, nz) = g
√

2

4π3nF !

n1∑
l1=0

b(nx, lx)

ny∑
ly=0

b(ny, ly)

nz∑
lz=0

b(nz, lz)



(
5
2 − l + nF

)



(
5
2 − l

) (C.4)

where b(n, l) is (−1)l
(n
l

)



(
l + 1

2

)
/l!. Equation (19) is derived from the above form. When

ny = nz = 0, equation (C.4) is reduced to

ξ(nF + 1, 0, 0) = (nF + 1)

√
2g

2π
3
2

nF +1∑
l=0

(2l − 1)!!

(2l)!!

(2l − 5)!!

(2l)!!

(2nF − 2l + 3)!!

(2nF + 2 − 2l)!!
. (C.5)

We find that (2l−1)!!
(2l)!!

(2l−5)!!
(2l)!! decreases in proportion to l−3, on the other hand (2nF −2l+3)!!

(2nF +2−2l)!!

decreases in propotion to er(nF − l)
1
2 and has nearly constant value if l � nF . Hence, we

find

ξ(nF + 1, 0, 0)∼= (nF + 1)

√
2g

2π2

nF +1∑
l=0

(2l − 1)!!

(2l)!!

(2l − 5)!!

(2l)!!

(
n

1
2
F + O

(
n

− 1
2

F

))

∼= 4
√

2

9π3
n

3
2
F + O

(
n

1
2
F

)
. (C.6)

Here, we use the relation π
∑∞

l=0
(2l−1)!!
(2l)!!

(2l−5)!!
(2l)!! = 4/9. We obtain the first term of

equation (20). The coefficient of second term is approximated by summation of equation (C.5)
up to l = 2.
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Appendix D. Derivation of equation (24)

At high temperature, i.e. where the Boltzmann distribution is applicable, d-dimensional energy
is given by

E0 = 2
∞∑

n=0

D(n)

(
n +

d

2

)
(D.1)

= d exp

(
1

T

(
µ − d

2

)) (
1 + exp

(− 1
T

))
(
1 − exp

(− 1
T

))d+1

∼= d exp

(
1

T

(
µ − d

2

))(
1 + exp

(
− 1

T

))
T d+1. (D.2)

The kinetic term of equation (25) is obtained from equations (D.2) and (23). On the other
hand the interaction term is given by

Eint = g

(2π)d

∞∑
n=0

∞∑
m=0

∑
n1+···+nd=n

m1+···+md=m

exp

(
− 1

T

(
n1 + · · · + nd − µ +

d

2

))

× exp

(
− 1

T

(
m1 + · · · + md − µ +

d

2

)) ∫ ∞

−∞
dx1 · · · dxd

× exp

(
−1

2

(
x2

1 + · · · + x2
d

))
Lm1

(
x2

1

2

)
· · ·Lmd

(
x2

d

2

)

×Ln1

(
x2

1

2

)
· · ·Lnd

(
x2

d

2

)
. (D.3)

We use relation (B.2) then the above form is reduced to

Eint = g

(2π)d

dπ
d
2



(

d
2 + 1

) ∫ ∞

0
dr rd−1 exp

(
− r2

2

)( ∞∑
n=0

exp
(
− n

T

)
Ld−1

n

(
r2

2

))2

. (D.4)

We use equation (22) and the relation
∞∑

n=0

tnLd−1
n (x) = exp

(− xt
1−t

)
(1 − t)d

(D.5)

and find

Eint = g

(2π)d

dπ
d
2



(

d
2 + 1

)N2
∫ ∞

0
dr rd−1 exp

(
− r2

2 tanh
(

1
2T

)
)

. (D.6)

We obtain equation (24) from equation (D.6).

References

[1] DeMarco B and Jin D S 1999 Science 285 1703
[2] Truscott A G et al 2001 Science 291 2570
[3] Schreck F et al 2001 Phys. Rev. A 64 011402
[4] O’Hara K M et al 2000 Phys. Rev. Lett. 85 2092
[5] Houbiers M, Stoof H T C, McAlexander W I and Hulet R G 1998 Phys. Rev. A 57 R1497
[6] Stoof H T C, Houbiers M, Sackett C A and Hulet R G 1996 Phys. Rev. Lett. 76 10
[7] Holland M, Kokkelmans S J J M F, Chiofalo M L and Walser R 2001 Phys. Rev. Lett. 87 120406
[8] Chiofalo M L, Kokkelmans S J J M F, Milstein J N and Holland M J 2002 Phys. Rev. Lett. 88 090402



10470 H Yoshimoto and S Kurihara

[9] Ohashi Y and Griffin A 2002 Phys. Rev. Lett. 89 130402
[10] Search C P et al 2002 Phys. Rev. A 65 063616
[11] Haldane F D M 1991 Phys. Rev. Lett. 67 937
[12] Bhaduri R K et al 1996 Phys. Rev. Lett. 76 165
[13] Viefers S et al 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4609
[14] Hansson T H et al 2001 Phys. Rev. Lett. 86 2930
[15] Heiselberg H and Mottelson B 2001 Preprint cond-mat/0112248
[16] Bruun G M and Heiselberg H 2002 Phys. Rev. A 65 053407
[17] Menotti C, Pedri P and Stringari S 2002 Preprint cond-mat/0208150
[18] Bruun G M et al 1999 Eur. Phys. J. D 7 433
[19] Block M and Holthaus M 2002 Phys. Rev. A 65 052102
[20] Bolda E L, Tiesinga E and Julienne P S 2002 Phys. Rev. A 66 013403
[21] Wonneberger W 2001 Phys. Rev. A 63 063607
[22] Gao X and Wonneberger W 2002 Phys. Rev. A 65 033610
[23] Vichi L and Stringari S 1999 Phys. Rev. A 60 4734
[24] van Zyl B P et al 2003 Phys. Rev. A 67 023609


